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Recent studies have revealed that the ruffled porphyrin ring Scheme 1. Possible Electron Configurations of the S = 3/

affects the electron configuration of low-spi € /) iron(lll) Iron(lll) Porphyrin Complexes
porphyrins and increases the contribution gf,(d,)*(dx)* relative dy2.y2

to that of (d)*dx, dy)%* Thus, highly ruffled [Fe(TPrP)(4-

CNPy)]* exhibits a quite pure (@ dy,)%dy)%.2? In contrast, the dz2 ——1—
saddled deformation of the porphyrin ring stabilizes a ground state dyy _4___

of (dyy)?(dys dy2)%.3 Since the energy levels of the,dand d; (dy,,

and g,) orbitals are affected differently due to the deformation mode dyz dzx :ﬂ:&

of the porphyrin ring, it would be quite natural to expect the 2 2 1
existence of the two types of intermediate-sgB+(3,) complexes (dz, dyz)*(dy)'(d72)' (0hy) "Gz, dy2)(dz2)
with different electron configurations, namely4cb,,)3(dy,)X(d2)t S = 3/2(dxy) S =3/2(d,)
and (dy)?(dks dy)%(d2)* as shown in Scheme 1; the spin states with
these electron configurations are tentatively calle as /5(dy)
and S = 9/,(d,), respectively. It should be noted that the electron _CHEtz
configuration of theS = 3, complexes reported previously is
considered to b& = ¥/,(d,).*° In this communication, we report
that highly ruffled [Fe(TEtPrP)(THE)' (18) and [Fe(TEtPrP)CIg)
(1b) exhibit the novelS = 3/,(d,), while highly saddled [Fe- Et Et
(OETPF’l)(THF)]Jr (28) and [Fe(OETPP)CIg" (2b) adopt the CHEL, CHEt, P Ph
conventionalS = ¥/,(d,) (Scheme 2§. _ B Et

lawas prepared according to the literatfivghich was converted
to 1b by the removal of the axial THF ligand under reduced pressure  [Fe(TEtPIP)(THF)2ICIO4 (1a)  [Fe(OETPP)(THF)2]CIO, (2a)
at 60°C for 5 h8 The'H NMR spectra (CBCl,, 298 K) of laand [Fe(TEtPrP)CIO,] (1b) [Fe(OETPP)CIO4] (2b)
1b were quite similar; the pyrrole andeseCH appeared at 35.6
and 8.4 ppm inla, and—32.8 and 10.8 ppm idb, respectively.
lashowed the THF signals at 5.8 and 10.0 ppfine large upfield
and downfield shifts of the pyrrole and THF signals, respectively,
suggest that botlia and 1b are S = %/,, or admixedS = 3/,, 5/,
with the major contribution of th& = 3,.621011The conclusion
was further verified by the EPR spectra taken in frozenClHat
4.2 K; thegp andg values were 4.15 and 2.00 fdaand 4.09 and
1.98 for1b. The Mtssbauer spectra also indicated thatadopts
the S= 3/, spin state in a wide range of temperatures; the 1S and
QS values were 0.24 and 3.80 mmt at 290 K and 0.31 and 3.84
mm s at 77 K, respectivel§:1%11 Furthermore, the effective
magnetic moment ofa determined by SQUID was 3-81.0 ug in
200—-300 K. Although the Masbauer and SQUID data b were
unable to be obtained at present, these results clearly indicate tha
both 1a and 1b are essentially pur§ = 3/, complexes.

We have then measured tF€ NMR spectra since thmese
13C chemical shift is known to be a powerful probe to determine
the electronic state of the iron(lll) porphyris31912|n the case
of low-spin complexes, for example, tmeese!*C signal moves
downfield from 55 ppm in [Fe(TPP)(HIrg)" to 707 ppm in [Fe-
(T'PrP)(4-CNPyjl+ as the (g, dy)*(dxy)* contribution increases.

Scheme 2. Complexes Examined in This Study
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In other words, the downfield shift of thenese!*C signal is
proportional to the population of the unpaired electron in the d
orbital 1* We have exploited this tendency to determine the electron
configurations of theS = 3, complexes. For the unambiguous
assignment, thenese!'3C-enriched (99%'C) 1a and 1b were
prepared, starting from the condensation reaction between pyrrole
and 2-ethylbutanal (33C).23 Figure 1 shows th&C NMR spectrum

of 1b taken at 298 K. The signal at 342 ppm was assigned to the
mesaocarbon by the spectral comparison with these'*C-enriched

1b shown in the inset (a). This signal moved upfield in a hyperbolic
fashion by the addition of THF as shown in the inset (b) and
approached to 104 pp#.Thus, themese!3C chemical shift of

the bis(THF) complexia) was estimated to be 104 ppm. Similar
upfield shift was observed ib by the addition of THF as shown

fn the inset (b). TheneseC chemical shifts oRa and 2b were
determined to be-244 and—47 ppm, respectively, at 298 K. The
downfield shifts of themese!3C signals in five-coordinat&b and

2b relative to those in the six-coordinafiea and 2a should be
ascribed to the g—a, interaction in the former complexes as
reported recently by Cheng et’d8lAs mentioned, the ruffleda
and1b exhibited themese!'3C signals fairly downfield as compared
with the saddled?a and 2b. The difference in chemical shifts
 Denarent of Chemre Semon) of Media betweenlaand2ais 348 ppm, _and that_ fatb qnd2b is 389 ppm

i Dﬁ/‘i)se}grrpg?Bci)omolfzg]tjlsa:yyscigngg, %radeual‘t:éngbhool of Science. Qt 298 K. The large difference in chemical shifts 9an be |nterprgted
TDepartment of Chemistry, Faculty of Science. in terms of the presence or absence of the unpaired electron in the
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Figure 1. 13C NMR spectrum ofLb taken in CRClI, solution at 298 K.
Inset: (a)13C NMR spectrum ofmese!3C enrichedlb. (b) Change in
chemical shifts of thenese!3C signal as observed by the addition of THF
into the CDQCl; solutions oflb (O) and2b (O).

dyy orbital; the unpaired electron in this orbital is transferred to the
mesepositions by the g—a, interaction and induces the downfield
shift of the mese3C signalstP? Therefore, the results strongly
indicate that the ruffledla and 1b adopt the noveB = 3/,(d,y).
The upfield shift of themese!3C signals in the saddled complexes
is then ascribed to the conventior&= %/,(d,), which enables the
unpaired electrons in the @rbitals disperse to the pyrrole ring by
the d,—3g interactions. Since the g@rbitals have nodes at the
mesaopositions, the interactions cause the upfield shift ofrttese

13C signals due to the spin polarizati&h.

Reed and Guiset reported that [Fe(TPPJ(E,Hs)] adopts an
essentially puré&s = 3/, spin state and that the complex shows the
pyrrole signal at an extremely upfield position62 ppmi®17In
contrast, [Fe(TEtPrP)CI (1b) exhibits the pyrrole signal more
downfield,—33 ppm. The large difference in pyrrole shifts, 29 ppm,
between these tw8= 3/, complexes serves another line of evidence
supporting thatlb actually adopts a noves = 3/5(dy,). This is
because, th8= 3/,(dy,) complexes have only one unpaired electron
in the d, orbitals, while theS = 3/5(d,) complexes have two; the
unpaired electron in the,@rbitals is the major factor for the upfield
shift of the pyrrole signals.The electron configuration mentioned
above is further supported by the fact that the difference in pyrrole
shifts between low-spin [Fe{rP)(4-CNPy)* and [Fe(TPP)-
(HIm)z]* is also quite large, ca. 30 ppth.The large difference
should again be explained in terms of the number of the unpaired
electrons in the dorbitals. While [Fe(TPrP)(4-CNPyj]* has no
unpaired electron, [Fe(TPP)(HIghy has one; the electron con-
figurations of these complexes are expressed,asdg*(dy)* and
(dy)?(dkz d;)3, respectivelyt

Determination of the spin states and electron configurations for
all the oxidation states of heme irons, ironttiyon(V), is quite

important to elucidate the biological processes where heme proteins

are involved. Rivera et al. pointed out that the,(d,,)*(d,)*-type

low-spin complex, possibly formed in the heme degradation process,
could play a crucial role in the reactiéh Shaik et al. proposed
that the diverse reactions catalyzed by cytochromes P450 could be
explained in terms of the difference in reactivity between the high-
spin and low-spin states of the compound I, i.e., -ekon(IV)
porphyrin radical catioA? Thus, characterization of the complexes
with a novelS= %/,(d,y) can contribute to the better understanding
of the heme-containing biological processes.
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